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Self-rotation in electrocapillary flows

M. A. Herrada and A. Barrero
Escuela Superior de Ingenieros, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain

~Received 2 April 2002; published 24 September 2002!

The mechanism of appearance of swirl in a certain class of converging flows is investigated numerically. The
analysis is motivated by the spontaneous generation of swirl, which has been observed in electrified menisci
~Taylor cones!. The electrical stress acting on the cone surface drives these electrified millimetric fluid flows.
Numerical results show that the primarily swirl-free meridian flow is unstable within an interval of values of
the Reynolds number based on the surface stress. For values of the Reynolds number outside this interval,
which depends on the forcing conditions and the geometry of the flow, the nonswirling meridian flow is stable.
The instability mechanism of circulation amplification, which has nothing to do with the well-known increase
of swirl velocity due to the vortex stretching mechanism, is due to a convection-diffusion effect. The circula-
tion accumulated at the axis zone by the converging meridian motion is pumped by diffusion toward the
conical surface. This feedback loop mechanism shoots the circulation amplification for values of the Reynolds
number larger than a critical one. The same instability mechanism of swirl amplification could also appear in
other converging flows generated by body forces~natural convection, electrical forces, etc.!.

DOI: 10.1103/PhysRevE.66.036311 PACS number~s!: 47.20.2k, 47.32.2y, 47.65.1a
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I. INTRODUCTION

Swirl generation in fluid masses without any appar
cause leading to it, namely self-rotation, is met in many na
ral systems. For example, the rotation observed in spiral
axies, protostar nebulae, and other astrophysical objects@1#.
Hurricanes and tornadoes are also examples of natural fl
where the generation of circulation remains also un
plained. In a more humble scenario, the bathtub vortex
classical example closely related to self-rotation@2#. A care-
ful experimental investigation on swirl generation in a ba
tub, @3# has shown that swirling motion around the sinkho
appears only when the sink flow rate exceeds some thres
value. In any case, whether the bathtub vortex is either du
symmetry breaking at a certain threshold value of some
rameter of the problem or external forcing is still a matter
controversy@4#. A recent experimental investigation on th
appearance of swirl in a confined sink flow@5# suggests tha
the formation of the vortex is due to a supercritical bifurc
tion at a certain critical Reynolds number. In addition to t
above mentioned cases, other examples of spontaneou
pearance of circulation in flows under well-controlled expe
mental conditions are, i.e., free convection in a sealed cy
der @6#; a horizontally oscillating glass of water@7#; an
electrically driven flow of mercury in a cup@8#; and the flow
inside electrified menisci@9# ~Taylor cones in the electro
spray literature!.

Although spontaneous circulation is a common feature
all these different flows, the physical mechanism leading t
can be entirely different for each one of them. Here, we
interested in the discussion of the mechanism of spontan
appearance circulation~swirl! in primarily swirl-free, merid-
ian recirculatory flows. Note that we refer to generation
circulation instead of generation of large swirl velocities w
constant circulation as it occurs, for instance, in converg
flows due to the vortex stretching mechanism~angular con-
servation momentum!. Meridian recirculatory flows take
place inside electrified menisci~Taylor cones!, or in the Bo-
1063-651X/2002/66~3!/036311~10!/$20.00 66 0363
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jarevics experiment among others. A Taylor cone forms
the exit of an electrified needle when a liquid is inject
through it at appropriate flow rates. Details of a typical e
perimental setup are given in Ref.@10# among many others
@11#.

Liquid motions inside the Taylor cone, which have be
recently investigated, in Refs.@9# and @12#, are driven by
both the tangential component of the electrical stress ac
on the gas-liquid interface of the meniscus and the injec
value of the flow rate. Moreover, as shown by experimen
the flow pattern depends strongly on the properties of
liquid that is being electrosprayed, mainly the viscositym
and the electrical conductivityK. In fact, when liquids with
sufficiently high values of both electrical conductivity an
viscosity are electrosprayed no noticeable motion differ
from the pure sink flow corresponding to the imposed va
of the flow rateQ is observed. For such liquids the voltag
drop in the liquid is so small that the tangential electric
stress on the surface is negligible.

When we use liquids with smaller values of the electric
conductivity and viscosity, the tangential electrical stress
the surface increases and, consequently, the velocity indu
by the stress increases too. If this characteristic velocity
larger than that due to the flow rate, a recirculating merid
motion, towards the apex along the generatrix and aw
from it along the axis, appears. The liquid lying close to t
surface is ejected through the jet while the rest recircula
towards the apex along the generatrix. The two flows
separated by a dividing stream surface passing through
stagnation point located at the axis at a certain distance f
the cone vertex. Figure 1 shows the projections of the p
ticle path lines on the meridian plane of a Taylor cone
thogonal to the observation axis. It should be pointed out t
the shape of the electrified meniscus becomes more con
as the applied voltage increases, but the flow pattern rem
essentially identical to the one in Fig. 1. Propylene glyc
doped with a small amount of hydrochloric acid to enhan
its electrical conductivity (K50.015 S/m) has been use
©2002 The American Physical Society11-1
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Also, similar flow patterns are observed when other liqu
with values of both the viscosity and the electrical cond
tivity of the same order are used.

In contrast, it is found that the streamlines are not c
tained in meridian planes when liquids with sufficient
small values of both the electrical conductivity and the v
cosity are electrosprayed~the case of liquid paraffins an
some alcohols!, see Fig. 2. As shown in the figure, there a
an intense motion in the azimuthal direction~swirl! in addi-
tion to the meridian one. Figure 2, which results from sup
position of several consecutive video frames, shows the
jections of the particle path lines on the meridian plane of
Taylor cone orthogonal to the observation axis. Ethanol
purchased, which has values of the conductivity and visc

FIG. 1. Particle path lines in an electrified meniscus of pro
lene glycol. No azimuthal velocities are observed in this case.

FIG. 2. Particle path lines in an electrified meniscus of ethan
Trajectories show unambiguously the existence of an intense s
in the liquid motion.
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ity much smaller than those of the propylene glyc
(;1500 and 60 times less conducting and viscous! was the
liquid used in this experiment.

The Reynolds number, defined from a characteristic
locity of the liquid and the needle diameter is the only d
namical parameter making a difference between the
cases considered in Figs. 1 and 2. Based on experime
observations, the Reynolds number of the motion was e
mated to be 331023 for the propylene glycol case and 5
for the ethanol case@9,12#.

To explain the appearance of circulation in primarily m
ridian recirculatory flows such as the ones inside Tay
cones@12# ~also in the experiment by Bojarevics@8,13#! we
considered the self-similar motion of a liquid inside an u
bounded cone driven by a stress in the radial direction, wh
varies as the inverse of the square distance to the cone v
r * ; the component of the stress in the azimuthal direct
being zero. Thus, the Navier-Stokes equations reduce
system of nonlinear ordinary differential equations that d
termines the velocity vector and pressure field. The result
the self-similar analysis show that swirl appears owing
bifurcation from a primarily swirl-less meridian flow wher
the liquid moves towards the vertex along the generatrix
away from it along the axis. This bifurcation occurs when
characteristic Reynolds number of the motion is larger tha
threshold value.

Clearly, the assumption of an unbounded conical dom
required for the existence of self-similar solutions could p
some restrictions for the relevance of the self-similar res
regarding to real flows inside Taylor cones. Another dra
back of the analysis by Shtern and Barrero@12# is that, in
real Taylor cones, the tangential component of the electr
stress scales with the distance to the vertex in the fo
r * 22.5, see Ref.@10#, while anr * 22 dependence is require
for the Navier-Stokes equations becomes self-similar.
should be pointed out that for very high Reynolds numbe
the Euler equations also admit self-similar conical solutio
if the driving stress has the formt r* u;r * 2 l ( l being any
real number! @14#. Nonetheless, such inviscid analysis is n
appropriate to investigate the existence of bifurcations a
nite values of the Reynolds number.

To enhance the knowledge on the phenomenon of spo
neous appearance of circulation~swirl! in Taylor cones when
a parameter~the Reynolds number! exceeds a threshold
value, we have considered the axisymmetric motion of a
uid inside the conical domain of Fig. 3. The motion is driv
by a stress in the radial directiont r* u acting at the conical
surface. The axisymmetric Navier-Stokes equations gove
ing the problem are solved numerically. Since, as in r
electrosprays, there is no direct mechanism of swirl gene
tion, we are looking for the conditions at which intense sw
motion appears in addition to the meridian motion genera
by the forcing stress.

The paper is structured as follows: Equations and bou
ary conditions for the modeling of the flow inside Taylo
cones as well as a brief description of the numerical sche
used to integrate the equations are given in Sec. II. Fina
results are presented and discussed in Sec. III.
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II. PHYSICAL MODEL

We have considered the motion of a liquid inside the co
cal domain sketched in Fig. 3,

R1<r * <R2 , 0<u<uc , ~1!

R2 is typically the distance from vertex to needle, andR1 is
small as compared toR2. The needle diameter is related
R2 asd52R2 sinuc , whereuc is the cone semiangle.

At the conical surface (u5uc), we assume that there is
tangential stress pointing to the vertex, which drives the
uid motion. This stress depends on the dimensional dista
to the vertexr * as

t r* u~r * !52Re
rn2

R2
2 S R2

r *
D l

, ~2!

wherer is the density of the liquid,n is the kinematic vis-
cosity, andl is any positive real number. Note that we ha
excluded the small region near the vertex 0<r * ,R1 from
the domain since the Navier-Stokes equations in sphe
coordinates are singular at the origin; also the driving str
~2! becomes singular at the origin. Note also that the R
nolds number has been defined here from the strength o
driving stress. Therefore, if one introduces arbitrarily a ch
acteristic velocity of the motion defined as

Vc5
R2t r* ,u~R2!

rn
, ~3!

the Reynolds number of the motion has the usual form
5VcR2 /n.

In real electrosprays, the value of the exponentl in Eq. ~2!
is close to the valuel 52.5 @10#. In fact, the electrical stres
is given byt r* u.boEuEr* , where the normal component o
the electric field is approximately given by Taylor’s valu
@15#,

FIG. 3. Sketch of the conical domain considered in the proble
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, ~4!

and the radial component of the electrical field is alm
exclusively due to electrical conduction,

Er* 52
I

2p~12cosuc!Kr * 2
, ~5!

whereg is the liquid-gas surface tension,bo is the permit-
tivity of the vacuum,K is the electrical conductivity of the
liquid, andI is the current emitted throughout the jet.

A. Governing equations

For the numerical computation of the axisymmetric m
tions considered here, it is useful to introduce a stre
function-vorticity formulation. Therefore, we define dime
sionless axisymmetric meridian stream functionC and a cir-
culationG such as

ur5
1

r 2 sinu

]C

]u
, uu52

1

r sinu

]C

]r
, ~6!

and

uf5
G

r sinu
, ~7!

whereur , uu , and uf are the radial, polar, and azimuth
components of the dimensionless velocity of the liquid. A
variables are dimensionless andR2 andn/R2 have been cho-
sen as scales of length and velocity, respectively. Theref

C5C̄/n and G5Ḡ/n, ~8!

whereC̄ and Ḡ are dimensional stream function and circ
lation, respectively. In addition, we define the new variableh
~related to the azimuthal vorticityvf) in the form

h5r sinuvf5sinuS ]~ruu!

]r
2

]ur

]u D , ~9!

so that, taking into account Eq.~6!, Eq. ~9! reads

h52
]2C

]r 2
2

1

r 2 S ]2C

]u2
2cotu

]C

]u D . ~10!

Two additional equations forG andh are obtained from both
the azimuthal momentum equation

DG

Dt
5

]2G

]r 2
1

1

r 2 S ]2G

]u2
2cotu

]G

]u D , ~11!

and the azimuthal vorticity equation

.

1-3
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Dh

Dt
52

2G

r 3 sinu

]G

]u
1

2Gcosu

r 2 sin2u

]G

]r
1

2h

r 3 sinu

]C

]u

2
2h cosu

r 2 sin2 u

]C

]r
1

]2h

]r 2
1

1

r 2 S ]2h

]u2
2cotu

]h

]u D ,

~12!

where

D

Dt
5

]

]t
2

1

r 2 sinu

]C

]r

]

]u
1

1

r 2 sinu

]C

]u

]

]r
~13!

is the total derivative.

B. Initial and boundary conditions

At t50, the liquid is assumed to be at rest, hence

C5G5h50, ~14!

at any point inside the considered domaind5R1 /R2<r
<1, 0<u<uc . Alternatively, any steady solution with
Reynolds number close to that of the numerical solution
are looking for may be used as initial condition to start t
numerical integration.

In real situations the gas-liquid interface, whose sha
results from a balance of the capillary, electrical, and
namical pressures, does not differ substantially from
conical surfaceu5uc . This observed conical symmetry
explained from the fact that the effect of the dynamical pr
sure is almost negligible as compared to the other two eff
~the Taylor solution corresponds to the static case!. This qua-
siconical shape gives strong support to the assumption
indeed the shear stress at the surface of the conical men
follows a power law withr as given by Eq.~2!.

Therefore, atu5uc we have for the driving stress

s r ,uuu5uc
5F r

2

]

]r S uu

r D1
1

2r

]ur

]u G
u5uc

52Rer 2 l ~15!

and

sfuuu5uc
5Fsinu

2r

]

]u S uf

sinu D G
u5uc

50, ~16!

wheres stands for dimensionless shear stress at the bo
aries. Sinceuu50 at u5uc , Eqs.~15! and ~16! taking into
account Eqs.~9! and ~10! become

h52 Re sinucr
12 l and

]G

]u
22Gcotuc50 at u5uc .

~17!

The boundaries of the domain in Fig. 3 are assumed to
impermeable, so that

C50 at u50,u5uc , r 5d, and r 51. ~18!
03631
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In principle, condition~18! on the spherical surfacesr 5d
and r 51 would have nothing to do with real Taylor cone
where there is a net flow rate through it. The azimuthal
locity will increase enormously along the converging strea
lines that issue throughout the jet, but circulation will rema
almost constant. As shown in the analysis, the amplificat
~generation! of circulation, which occurs in Taylor cones,
due to bifurcation from a primary meridian recirculatin
swirl-free flow. In real situations such a flow presents wh
the injected flow rate is near the minimum one compati
with a stable cone-jet mode configuration. In this case,
velocities due to the electrical stress are much larger t
those due to the injected flow rate and most of the liq
recirculates along meridian planes. Since we are intereste
the description of the trigger mechanism of such bifurcati
we have not considered the influence of a nonzero, but sm
flow rate.

Conditions of regularity and symmetry must be satisfi
at the axis,u50,

uf5uu5
]ur

]u
50; ~19!

the corresponding conditions forG andh are

h5G50 at u50. ~20!

Reliable boundary conditions at the spherical surfacesr 5d
andr 51 cannot be obtained from experimental observatio
since the measurements of the velocity field inside the e
trified meniscus are still lacking. On the other hand, Eq.~11!
is linear inG, so that some source of angular momentum
needed to have solutions of the axisymmetric Navier-Sto
equations with nonzero circulation. In electrocapillary flow
this source could be due to some nonsymmetric condition
the capillary needle~roughness, skewness, etc!. Therefore, to
model the influence of small perturbations in the circulati
at the upper boundaryr 51, we assume

G5e sin2 u at r 51, ~21!

wheree is a nondimensional constant that is assumed to
very small (e!1). The dependence ofG on u in Eq. ~21! is
just the one to satisfy the conditions forG in both the axis
and the conical surface. Clearly, the numerical solution w
depend on the chosen value ofe, so that, for each value ofe,
one would find different bifurcation diagrams for circulatio
~one diagram for each value ofe); the critical Reynolds
number at which bifurcation occurs being a function ofe.
Nonetheless, ife is small enough, the numerical solution an
the critical Reynolds number become independent ofe. Note
that the limit casee50 is different. In this case no bifurca
tion occurs and only the trivial solutionG50 exists.

In addition, we suppose that the forcing stress at the co
cal surface is the only source of azimuthal vorticity in t
domain@see first equation in Eq.~17!#, so that, we assume

h50 at r 5d and r 51. ~22!
1-4
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Finally, regarding boundary conditions onG at r 5d, we
arbitrarily assume

dG

dr
50. ~23!

As an alternative to condition~23!, we have considered tha
the surface stress in thef direction vanishes atr 5d

sfr50 or, equivalently,
dG

dr
22G50. ~24!

The use of these two alternative boundary conditions allo
us to know their influence on the swirl generation proce
As shown by the numerical results the swirl generation
independent of using either Eq.~23! or Eq. ~24!. System of
second-order, nonlinear partial differential equations~10!–
~12! together with initial and boundary conditions~14!, ~18!,
~17!, ~20!, ~21!, ~22!, and either~23! or ~24! yield the values
of C, G, andh as functions of the variablesr, u, andt and
dimensionless parameters Re,d, uc , l, ande.

C. Numerical procedures

We have used two different numerical schemes to so
Eqs. ~10!–~12!. The time evolution of the flow inside th
domain has been calculated by using an explicit meth
Alternatively, a Newton-Raphson scheme have been use
obtain steady state solutions of Eqs.~10!–~12!. In the first
method, Eqs.~10!–~12! are discretized in space using
second-order central-difference approximation to spatial
rivatives; a uniform grid ofM3N nodes in the numerica
domain has been considered. A two-step, second-o
predictor-corrector scheme has been used to integrate
~11! and ~12! in time. Finally, we have used the matrix d
agonalization method@16#, whose computational complexit
is of the orderNMmin(M,N), to solve efficiently the Poisson
equation in Eq.~10!. Several mesh sizes and different int
gration time steps depending on both the Reynolds num
Re, and the geometrical parametersd anduc have been used
to integrate the discretized equations. The main drawbac
this method is that the integration time needed to reac
steady state solution from a given initial condition increa
with the Reynolds number.

Bifurcation diagrams can be obtained with much le
computational effort using a Newton-Raphson scheme to
tain steady solutions. In this second numerical scheme,
resultant equations of removing the time law derivatives
Eqs.~10!–~12! are discretized using second-order central d
ferences. It yields a system of 3M3N nonlinear algebraic
equations for the unknown valuesGk ,hk ,Ck in each node
k5(m,n), 1<m<M ,1<n<N. This nonlinear system ca
be written as

F~C,G,h;l![0, ~25!

where F is the matrix resulting from the discretizatio
procedure andl represents the characteristic parame
vector of the problem, which in our case contains Re,uc , d,
e, and l.
03631
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We solve the nonlinear system~25! using a standard
Newton-Raphson procedure from an initial guess

DF~C i ,G i ,h i ;l!~dC,dG,dh!52F~C i ,G i ,h i ;l!,
~26!

C i 115C i1dC, G i 115G i1dG, h i 115h i1dh.
~27!

Finally, we have used and standard iterativeGMRES solver
~Slatec package from ITL! to calculate efficiently the inverse
sparse Jacobian matrixDF.

III. DISCUSSION OF RESULTS

A. Bifurcation diagrams

The time evolution of the maximum value of circulatio
Gmax in the conical domain is shown in Fig. 4. It has be
calculated numerically for Re58.95, d50.1, uc545°, l
52.5, and three different values ofe (e5431025, e
50.04, ande54). We found that if the Reynolds number
greater than a threshold value Rec ~critical value!, the steady
state value of the maximum circulation experiences an en
mous amplification with respect to the value of the seed
perturbatione ~see the casese5431025 ande50.04 in Fig.
4!, while no amplification occurs for values of the Reynol
number smaller than the critical value. As expected, the
merical solution depends on the value ofe; the steady state
valueGmax

s being different in the casee54 than in the other
two cases. Note, however, that for values ofe sufficiently
small, the differences between the values of the steady s
become practically indistinguishable from each other~see the
casese50.04 ande5431025).

The independenceof the steady solution on the seede
perturbatione, for e small, is due to the enormous amplifi
cation undergone by the maximum circulation during t
transient process. In the case,e50.431025, Gmax

s is about
one hundred and fifty thousand times larger than the impo

FIG. 4. Time evolution of the maximum circulation in the do
main for three different values ofe and for Re58.95, d50.1, and
uc545°.
1-5
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value of the perturbation; this figure is one thousand tim
less in the other case,e50.04. Note that, for a given value o
the Reynolds number and as long ase is small, the same
steady flow can be reached through unsteady processes
start from different initial conditions; the larger the value
e the shorter the required time to reach the steady state va

In Fig. 5~a!, we have plotted the bifurcation diagram
Gmax

s ~solid and dashed parts of the curves! as a function of
the Reynolds number ford50.1, uc545, and l 52.5; the
casesl 52 and l 53 are plotted in Fig. 5~b!. It can be ob-
served in both figures that for values of the Reynolds num
smaller than a critical one, Rec( l ), which depends onl, the
flow is meridional, swirl-free, and stable under symmet
small perturbations while it bifurcates to a swirling flow fo
values of the Reynolds number larger than Rec( l ). As shown

FIG. 5. Bifurcation diagram of the steady state value of
maximum circulation in the domain,Gmax

s , as a function of the
Reynolds number forl 52.5, d50.1, anduc545°. The dashed par
of the curve corresponds to flows with vortex breakdown. Values
both Re* and Re

*
* are indicated on thex axis. ~b! Bifurcation dia-

grams of the steady state value of the maximum circulation in
domain,Gmax

s , as a function of the Reynolds number ford50.1,
uc545°, and two values ofl . The dashed part of the curves co
responds to flows with vortex breakdown. Values of both Re* and
Re

*
* are indicated on thex axis.
03631
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in Figs. 5~a! and 5~b!, the value of the critical Reynolds
number decreases whenl increases; Rec.10.2, Rec.6, and
Rec.2.8 for l 52, l 52.5, andl 53, respectively. This be-
havior lies on the fact that for given values of both the Re
nolds number and the geometrical parameters, the driv
stress~15! and consequently the induced velocities increa
with l. Therefore, the larger the value ofl the smaller the
Reynolds number at which convection becomes importan
shoot up the instability mechanism.

It should be pointed out that the bifurcation diagrams c
be also obtained by shedding an initial circulation~small
perturbation! in the whole domain instead of forcing with
small perturbation atr 51. We found that if the Reynolds
number is smaller than the critical one, Re,Rec , the initial
perturbation in the domain is damping down and a solut
with Gs50 is obtained. On the contrary, for Reynolds num
bers larger than the critical, the flow evolves towards aGs

Þ0 solution. Numerical calculations show that circulatio
remains zero at any time if both the forcing perturbation
boundaryr 51 is zero (e50), and no circulation perturba
tion is shed in the whole domain. This is due to the fact t
if G is zero every where at a given timeto , the numerical
evaluation of each term in Eq.~11! leads identically to zero
at any timet.to . That is, the truncation and round-off erro
are zero in the numerical integration of Eq.~11! if G50 in
the domain and its boundary at the initial time.

Let us finally point out that the effect of nonsymmetr
perturbations on the flow, which has not been conside
here, they could be analyzed either by numerical simulat
or by a linear analysis of the stability of the symmetric s
lutions under small nonsymmetric perturbations. Nonet
less, both studies are beyond the scope of this work.

B. Instability mechanism

The instability mechanism may be explained bearing
circulation equation in mind

dG

dt
5¹2G2v•“G. ~28!

At sufficiently small Reynolds numbers, convection of circ
lation G is negligible. Circulation is transported by diffusio
from the boundaryr 51 and its value inside the domai
grows with time until a steady state is reached. At any tim
the maximum circulation is located atr 51 and its value is of
the order ofe. No circulation amplification takes place.

If the effect of viscosity decreases~higher values of the
Reynolds number! G is transported by both convection an
diffusion. The converging meridian motion transports circ
lation from boundaryr 51 towardsr 5d. Appreciable circu-
lation gradients in theu direction are generated near the ax
by this meridian motion. Thus, circulation is transported
diffusion from the axis towards the conical surface fro
where it is convected back towards the axis. This circulat
pumping, due to diffusion, is essential to close the feedb
loop that shoots the circulation amplification mechanism

f

e
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Reynolds numbers larger than the critical value. The ste
state value is reached by saturation.

Note, finally, that the instability mechanism here d
scribed has nothing to do with the well-known increase
swirl velocity due to the vortex stretching mechanism. In th
case, circulation~angular momentum! remains constan
along the fluid trajectories~high Reynolds number flows!.
On the contrary, in this case, circulation is amplified by
mechanism that combines convection of circulation towa
the axis along the outermost streamlines and feedback d
sion transport from the axis towards the outer streamlines
a result, the swirl-less, recirculating, meridian flow bifurca
to a swirling flow, for Reynolds numbers greater than a cr
cal one. Diffusion transport is therefore the ultimate mec
nism responsible for the change of circulation experien
along the streamlines.

C. Circulation quenching at increasing Reynolds numbers

Beyond Rec , swirling flows are found numerically as fa
as the value of the Reynolds number is less than a v
called hereafter Re

*
* ( l ). For values of the Reynolds numbe

greater than Re
*
* , swirling regimes are not found numer

cally, so that, we conclude that the only stable solutions
Re.Re

*
* are those withG50. As shown in Fig. 5, the value

of Gmax
s (Re) grows monotonically with the Reynolds numb

in the interval Rec,Re,Re
*
* ( l ). The values of Re

*
* ob-

tained numerically for the casesl 52, 2.5, and 3 are, respec
tively, 71, 36, and 28.

Let us now compare the bifurcation diagram found
conical self-similar flows with that given in Fig. 5~b! for l
52. In conical self-similar flows, there exists bifurcate
swirling flows in the interval Rec,Re,`. On the contrary,
we found numerically that the existence of swirling flows
restricted to the interval Rec,Re,Re

*
* . In both the cases

the value of the maximum circulation inside the domain
creases monotonically when the Reynolds number increa
Also, we found numerically a critical Reynolds number f
the casel 52 that is slightly larger than the one reported
the self-similar case@12#.

The reasons for this apparent discrepancies between
merical and self-similar solutions are discussed in the
lowing. The thickness of the axis zone where diffusion
important decreases when the Reynolds number increase
fact, this thickness is of the order ofn/Vc;R2 /Re. There-
fore, the circulation pumping by diffusion from the ax
could not reach the conical surface if the thickness of
diffusion zone is smaller than the minimum distance betw
the axis and the conical surface, which is of the order ofR1.
In that case, which occurs for Reynolds numbers larger t
a certain value Re

*
* , circulation cannot be pumped by diffu

sion from the axis towards the cone surface. Then, the m
mum circulation is of the order ofe and no circulation am-
plification takes place. In fact, we found that for a giv
value of d there is a value of Reynolds number Re

*
* (d),

which is a function ofd, such as no circulation amplificatio
exists for Reynolds numbers larger than Re

*
* . Only non-

swirling meridian flows present for Re.Re* since the circu-

*
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lation pumped by diffusion cannot reach the conical surfa
because the axis to conical surface distance is for these
nolds numbers larger than the corresponding viscous p
etration length.

Numerical results show that the parametric range of
Reynolds numbers, Rec<Re<Re

*
* , for which swirling

flows present, widens out when lesser values ofR1, with R2

fixed, are considered. In particular, for the casel 52 andR1

decreasing, the value of the critical Reynolds number Rc

found numerically approaches to the critical value of t
self-similar analysis while Re

*
* increases monotonously a

R1 goes to zero. Note that to have an efficient pumping
circulation from the axis towards the outer boundary, t
characteristic distanceR1 at the domain must be smaller o
comparable to the viscous penetration, or equivalently,
Reynolds number of the flow should be smaller than Re

*
* . In

conical self-similar flows Re
*
* becomes infinite@12#, since

the ratio between convection and diffusion is independen
the distancer from the origin and beyond the critical Rey
nolds number Rec circulation increases monotonically wit
Re.

A peculiarity of the flows withl .2.4 is the existence o
two metastable regimes in the interval Re* ,Re,Re

*
* , @see

Figs. 5~a! and 5~b!#. In that interval of Reynolds numbers
one of the two metastable regimes corresponds to theG50
regime and the other to the bifurcated swirling one, wh
only swirling flows are found to exist in the interval Rec
<Re<Re* . Re* corresponds to the maximum value of th
Reynolds number for which a solution with amplificationG
Þ0 is obtained when the numerical integration is star
from the rest. TheG50 regime is unstable under symmetr
small perturbations in the interval Rec<Re<Re* , while it is
not in Re* <Re<Re

*
* . The initial condition at which the

numerical integration is started determines which of the t
metastable regimes is finally reached. For example, if Re1 is
a value of the Reynolds number lying in the interval R*
<Re1<Re

*
* , the numerical solution withGÞ0 correspond-

ing to that value of the Reynolds number may be obtained
the following way. First, one must choose a value of t
Reynolds number Re2 lying in the interval Rec<Re2<Re*
and calculate numerically the solution for Re5Re2. This so-
lution must be used as initial condition of the numerical
tegration to find the required solution for Re5Re1. Alterna-
tively, if a Newton-Raphson scheme is used, the solut
corresponding to Re5Re2 must be used as an initial gues
This is the easier and faster method to find the nonzerG
branch of the interval Re* <Re1<Re

*
* since the final nu-

merical solution is obtained in a few iterations. Forl 52.5
and l 53, we have found numerically Re* .33 and Re*
.16, respectively. The width of the region where the tw
metastable regimes exist, Re

*
* –Re* increases withl and ap-

proaches to zero forl 52.4.

D. Vortex breakdown

The existence of internal flow separation at the axis,
vortex breakdown, is another interesting feature of th
swirling flows with forcing at the surface. Vortex breakdow
1-7
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takes place when the azimuthal to radial velocity ra
reaches a threshold value. It entails a strong modification
the meridian flow, which changes abruptly from a single-c
structure like the one shown in Fig. 6~a! to a double cell with
a counter-recirculating bubble near the axis, see Fig. 6~b!.
There is a stagnation point at the axis, which separates
axis zone where velocities are negative~towards the vertex!
from that where velocities are positive. The meridian ba
flow near the axis~towards the vertex along the axis! is a
consequence of the low pressure induced there by the e
of the centrifugal forces. The plot of the meridian streamlin
in Fig. 6~b! indicate that, in the outer cell, velocities are lar
near the conical surface and in the jetlike flow leaving
r 5d region, while in the inner cell the fluid is almost sta
nant. Steady state swirling flows with double-cell structu
are represented on the dashed part of the bifurcated swi
curve in Fig. 5. Note that in this case, vortex breakdown d
not prevent the growing of the maximum circulation of t
flow when the Reynolds number is increased. In fact,
jetlike flow, which develops along the axis in single ce

FIG. 6. Steady state one-cell meridian streamlines for the c
Re55.6, l 53, d50.1, anduc545°. ~b! Steady state double-ce
meridian streamlines for the case Re525, l 53, d50.1, anduc

545°.
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moves inside the domain when vortex breakdown ta
place. The distance between the region where circulatio
accumulated and the outer surface is less in the case
double-cell flow than in the single-cell one. Therefore,
spite of the occurrence of vortex breakdown, the pumping
circulation by diffusion still works efficiently and stronge
values of circulation are generated in the outer cell. Clea
for Reynolds numbers greater than Re

*
* , the transport of

circulation by diffusion is unable to reach the outer surfa
and only swirl-free flows are found to exist since the se
rotation mechanism does not work efficiently any more.

It should be finally pointed out that in electrocapilla
flows, vortex breakdown takes place at Reynolds number
order of unity, which are much lower than those of the vort
breakdown experiments described in the literature. Let
now comment some of the differences between the vo
breakdown occurring at very high Reynolds numbers~treated
in previous works! and that at Reynolds number of order
unity characteristic of the flows considered here. At hi
Reynolds number swirling flows, vortex breakdown appe
as a catastrophic event. The flow pattern changes drastic
when the swirl parameter~usually a characteristic swirl to
axial velocity ratio! is slightly increased beyond a critica
value, with the sudden appearance of a large coun
recirculating bubble in the meridian flow. A concrete, clea
cut example illustrating the mathematical scenario of vor
breakdown in flows at high Reynolds was provided by t
near-axis analysis of nearly inviscid vortices@18#. These au-
thors found that vortex breakdown appears when the sin
larities at the axis that often appears in axisymmetric invis
swirling flows cannot be regularized through thin visco
cores. In those cases, the near-axis viscous vortex equa
governing the viscous core of the vortex fail to have a so
tion. This behavior shows that viscosity plays an importa
role in the existence of these nearly inviscid vortices a
supports the theory proposed by Hall@17# on vortex break-
down as analogy to boundary layer separation.

That is not, clearly, the situation in flows at moderate
Reynolds numbers where viscosity is not restricted to v
thin regions of the flow. In our case, for example, a sm
bubble first appears when the Reynolds number sligh
overpasses the critical value~the flow separates at som
point at the axis with immediate reattachment! and the
bubble size increases gradually with increasing the Reyn
number. Clearly, in the cases of spontaneous generatio
circulation~self-rotation! the double cell disappears for Rey
nolds numbers larger than Re

*
* for which circulation is al-

most zero. In flows with forced circulation as those genera
by a rotating disk~see for example Refs.@19# and @20#
among others!, this nonabrupt kind of vortex breakdown ha
been also observed. An incipient small bubble presents
Reynolds number slightly greater than the critical value~of
the order of 1000! and whose size grows when the Reynol
number increases.

E. Influence of the cone angle

The influence of the cone angleuc on the bifurcation dia-
gram is shown in Fig. 7, where we have plotted values

se
1-8
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Gmax
s as a function of the Reynolds number for three diffe

ent values of the cone angle. Note that there exists a valu
the cone angleuc close to 45° for which the circulation
amplification is maximum. Note that larger values ofuc put
limits to the pumping mechanism of circulation while low
values ofuc lead to lower values of the driving stress, for
given value of the Reynolds number@see the first condition
in Ref. @13##. Therefore, there exists a value ofuc , which is
found to be close to 45° for which the self-rotation proce
results to be more efficient. It should be pointed out that
uc555°, the strength of the circulation is lower than in t
two other cases and the azimuthal to radial velocity ratio
lower than the threshold value required for the existence
vortex breakdown. Numerical results also show that ther
no amplification of circulation ifuc is larger thanp/2. This
result can be explained from condition in Eq.~16! or equiva-
lently the second condition in Eq.~17!, which establishes the
absence of any forcing in the azimuthal direction acting
the cone surface. This condition that plays a key role in
accumulation process of circulation at the corner (d,uc) of
the domain, shows thatdG/duuu5uc

is positive~negative! for

values of the cone angleuc smaller~larger! thanp/2. Since
the extreme ofG must be located at the boundaries, t
maximum ofG would be located at the corner (d,uc) only if
uc,p/2. Otherwise, the maximum must be located at
boundaryr 51 and, therefore, there is no amplification in t
value of circulation inside the domain. For conical flow
Ref. @12# reported the same result when the cone angle
larger thanp/2.

Let us now comment the influence of using condition~24!
instead of Eq.~23! on the process of generating circulatio
When condition~24! is used, the maximum value of the ci
culation is not longer reached at the corner (d,uc) but at
some point (r 1 ,uc), d,r 1,1. In that case, boundaryr 5d
behaves as a sink of circulation,dG/drÞ0 at r 5d when
condition ~24! ~zero stress in thef direction! is used, and
therefore the values reached by circulation are much sm

FIG. 7. Influence of the cone angle on the bifurcation diagra
for d50.1 andl 52.5. The dashed part of the curves correspond
flows with vortex breakdown.
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than those in the case of zero circulation flux condition~or
adiabaticboundary! dG/dr50.

Although the detailed experimental results of the veloc
field inside Taylor cones are not still available, it may
finally instructive, however, to compare typical values of t
azimuthal velocity obtained numerically with those es
mated from experimental measurements in electrosprays@8#.
In the electrospraying of heptane (r5684 kg/m3 and n
55.731027 m2/s at room conditions!, values of the Rey-
nolds number close to 10 and azimuthal velocities of a f
centimeters per second has been reported. For Re510, l
52.5, anduc535 ~the value ofuc closer to the experimenta
meniscus semiangle, see Fig. 4! one obtains from Fig. 7~a!
value of the dimensionless circulationGmax

s .6. Therefore,
from Eq. ~8!, the dimensional circulation is

Ḡmax5nGmax
s .6n, ~29!

and for a capillary needle ofR251023 m, the typical value
of the maximum azimuthal velocity is

vf* ;
Ḡmax

dR2
.3 cm/s, ~30!

which is the value of the typical velocity reported in Ref.@9#.

IV. SUMMARY

Recirculating meridian fluid flows inside Taylor cones a
observed in the electrospraying of liquids with sufficien
large values of both the viscosity and the electrical cond
tivity. In these motions, which are mainly driven by the ele
trical stresses acting at the cone surface, the liquid flo
towards the cone vertex, along the generatrix, and away f
it along the axis. In addition to the recirculating meridia
motion, an intense swirl is also observed when liquids w
smaller values of viscosity and electrical conductivity a
electrosprayed. This transition from a nonswirling recircul
ing meridian motion to a swirling one takes place when
characteristic Reynolds number of the flow is larger tha
critical value.

To model this phenomenon, we have considered the fl
driven by a tangential stress at the generatrix of the con
domain sketched in Fig. 3. A small region containing t
cone vertex has been excluded from the domain to av
singularities in the computational process. The parame
that govern the problem are the Reynolds number of
motion, the geometrical parametersd and uc , and a real
numberl that characterizes ther dependence of the drive
stress. An unsteady, axisymmetric Navier-Stokes numer
code is used to solve this problem. Therefore, the influe
of nonsymmetric perturbations on the generation of swirl h
not been considered in this analysis.

Numerical results show that a nonswirling meridian flo
bifurcates to a swirling one for values of the Reynolds nu
ber larger than a critical one, Rec . Values of Rec are calcu-
lated for several values ofl, uc , and d. The amplification
process of circulation is due to an advection-diffusion tra
port mechanism of circulation. Small perturbations in circ

s
o
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lation existing in the boundaryr 51 are convected by the
meridian recirculatory motion; towards the vertex along
conical surface, and away of it along the axis. Large gra
ents of circulation in theu direction are generated in th
near-axis region from where circulation is transported
wards the conical surface by diffusion. A steady state valu
reached when both diffusion and convection are balanc
For Reynolds numbers higher than the critical one, Rec( l ),
which depends onl, this convection-diffusion transport feed
back loop is very efficient and large values of circulation a
reached. The value of the steady state circulation is a gr
ing function of the Reynolds number of the flow.

There exists a value of the Reynolds number Re
*
* such as

swirling flows are numerically found for values of the Re
nolds number in between of the interval Rec,Re<Re

*
* ,

while only swirl-less flows are found for Re.Re
*
* . Re

*
* de-

pends on both the exponentl and the geometrical paramet
d. The nonexistence of swirling flows beyond Re

*
* is due to

a given value ofd, the viscous penetration length becom
smaller than the minimum separation distance between
axis and the conical surface and circulation cannot
pumped up to the conical surface by diffusion. Therefore,
amplification of circulation takes place for Reynolds nu
bers larger than Re

*
* . Numerical results show that the inte

val Rec,Re<Re
*
* becomes wider whend decreases withR2

fixed (Rec decreases while Re
*
* increases!. In particular, for

the casel 52, the value of Rec found numerically decrease
and approaches to the critical value found in the self-sim
analysis whend decreases withR2 fixed while Re

*
* increases

monotonously.
Bifurcation diagrams withl .2.4 are slightly different to

those already described withl<2.4. For l .2.4, we found
the existence of two kind of flows, with zero and nonze
circulation, which are stable in the interval of Reynolds nu
bers Re* <Re<Re* , while only swirling flows are found in
*

ra

bi

.
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the interval Rec<Re<Re* . The initial conditions at which
the numerical integration is started determine which of
two metastable regimes is finally reached. The width of
interval Re* <Re<Re

*
* widens out withl and goes to zero

as l goes to 2.4.
The existence of vortex breakdown is also found nume

cally when the strength of the swirling-to-meridian motio
reaches a threshold value. Flows with vortex breakdown c
respond to the dashed part of the bifurcation curves in Fig
The meridian flow is strongly affected by the occurrence
vortex breakdown. The structure of the meridian flow is
the one-cell type in the absence of vortex breakdown;
fluid moves towards the vertex along the conical surface
away from it along the axis. This flow structure chang
abruptly to one of the double-cell type when vortex brea
down occurs. In this case, an inner counter-recirculat
bubble, where circulation is almost zero and the fluid is
most stagnant, coexists with an outer recirculating cell w
nonzero circulation. A dividing streamline that meets the a
in a stagnation point separates the two cells.

The influence of the cone angleuc on the generation of
circulation has been also studied. We have found that
mechanism of circulation amplification is more efficient for
value ofuc that is close to 45°.

It should be pointed out finally that the instability mech
nism of swirl amplification here described could also app
in other converging flows generated by body forces~natural
convection, electrical forces, etc.!.
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